GENERAL DESCRIPTION

The EC4304 is a high-efficiency continuous mode inductive step-down converter which drives N -channel MOSFET and it is designed for driving single or multiple series connected LEDs from a voltage source higher than the LED voltage. It operates from input supply between 7 V and 40 V and provides and externally adjustable output current to 1 A which is depending on supply voltage and external components.
This EC4304 includes the output switch and high-side output current sensing circuit, which uses an external resistor to set the output current.
The ADJ pin will accept either a DC voltage or a PWM waveform. This will provide either a continuous or gated output current depending upon the control frequency. The PWM filter components contains a soft-start rising time setting. The soft-start time can be increased by using an external capacitor from the ADJ pin to ground. Applying a 0.2 V or lower to the ADJ pin turns the output off and switches the device into a low current standby state.

FEATURES

- Operates from 7V to 40V Supply Voltage
- Internal 40V NDMOS Switch
- Output Current 1A
- Single Pin On/Off and Brightness Control Using DC Voltage or PWM
- EC4304 to 95\% Efficiency
- Typical +/-5\% LED Current Accuracy
- Input Under Voltage Lockout
- SOT23-5L , DFN 3x3 8L, SOT89-5L Package
- RoHS Compliant and Halogen-Free

Applications

- Automotive LED Lighting
- High Power LED Lighting
- Indicator and Emergency Lighting
- Architectural Lighting
- Low Voltage Industrial Lighting
- Signage and Decorative LED Lighting

Functional Block Diagram

1A, Hysteretic, High Brightness LED Driver with Internal Switch

Pin Configuration

SOT89-5L

Pin Name	Pin Function
LX	Drain of NDMOS Switch.
GND	Ground for the IC. All voltages levels are measured with respect to this pin.
ADJ	Multi-Function ON/OFF and Brightnes Control Pin: -Analog signal input for analog control of PWM dimming. -PWM signal input for digital PWM dimming.
ISENSE	Current Sense Pin: Sense LED String Current.
VIN	Power supply input pin. Connect a nominal (7V 40V) power supply to this pin. The power- on-reset (POR) function monitors the input voltage by this pin. It is recommended that a decoupling capacitor (4.7 GND or Higher X7R Ceramic capacitor) be connected to the

Typical Application

Ordering/ Marking Information

Part Number	Package	Marking	Marking Information
EC4304ANT2R	SOT23-5	$4304 A$ LLLLLL	LLLLLL is Lot No
EC4304ANFNR	DFN3×3-8	4304A YWLLL	YW : Date Code LCL Lot No
EC4304ANB9R	SOT89-5L		

Functional Description

The EC4304 is a simple high-efficiency, continuous mode inductive step-down converter. The device operates with an input voltage range from 7 V to 40 V and delivers output current 1 A . A high- side current-sense resistor sets the output current and a dedicated PWM dimming input enables pulsed LED dimming over a wide range of brightness levels. A highside current-sensing scheme and an on-board current- setting circuitry minimize the number of external components which is required while delivering LED current with $+5 \%$ accuracy, using a 1% sense resistor.

Adjusting Output Current

The device contains a low pass filter between the ADJ pin and the threshold comparator and an internal current limiting resistor between ADJ and the internal reference voltage. This allows the ADJ pin to be overdriven with either DC or pulse signals to change the VSENSE switching threshold and adjust the output current. Details of the different modes of adjusting output current are given in the applications section by:
$\mathrm{I}_{\text {OUTdc }}=\frac{\mathrm{V}_{\text {ADJ }}}{1.25} \times \frac{100 \mathrm{mV}}{\mathrm{R}_{\text {SENSE }}} \quad$ (for $0.3 \mathrm{~V}<\mathrm{V}_{\text {ADJ }}<2.5 \mathrm{~V}$)
The value of the output current is 1 A at $0.1 \Omega(0.5 \mathrm{~A}$ at $0.2 \Omega)$ and this is a calculated output current when the ADJ terminal is 1.25 V floating.

Shutdown Mode

Taking the ADJ pin to a voltage below 0.2 V for more than approximately $100 \mu \mathrm{~s}$ will turn off the output, and supply current will fall to a low standby level of $20 \mu \mathrm{~A}$ nominal.

Soft-Start

The device has inbuilt soft-start action due to the delay through the PWM filter. An external capacitor from the ADJ pin to ground will provide additional soft-start delay, by increasing the time taken for the voltage on this pin to rise to the turn-on threshold and by slowing down the rate of rise of the control voltage at the input of the comparator.
With no external capacitor, the time taken for the output to reach 90% of its final value is approximately $500 \mu \mathrm{~s}$. Adding capacitance increases this delay by approximately $0.5 \mathrm{~ms} / \mathrm{nF}$.

Inherent open-circuit LED protection

If the connection to the LED(s) is open-circuited, the coil is isolated from the LX pin of the chip, so the chip will not be damaged. Unlike in many boost converters, where the back EMF may damage the internal switch by forcing the drain above its breakdown voltage.
Absolute Maximum RatingSupply Input Voltage, Vin (Note 1)-0.3 V to +45 VISENSE Voltage, VIsense+0.3 V to -5 V (measured with respect to V IN)LX Output Voltage, VLx0.3 V to +45 V
Adjust Pin Input Voltage, VadJ -0.3 V to +6 V
Switch Output Current, llx 1.2A
Operation Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $260^{\circ} \mathrm{C}$
ESD Rating (Note 2)
HBM (Human Body Mode) 4 kV
MM (Machine Mode) 200V
Thermal Information
Package Thermal Resistance (Note 3)
SOT23-5L JJA^{2} 2500/W
SOT23-5L θ лс 100 C/W
SOT89-5L UJA $175^{\circ} \mathrm{C} / \mathrm{W}$
SOT89-5L θ лс $58^{\circ} \mathrm{C} / \mathrm{W}$
Package Thermal Resistance (Note 4)
DFN3x3-8L JJA $70^{\circ} \mathrm{C} / \mathrm{W}$
DFN3x3-8L $\theta \mathrm{jc}$ $8.2^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation, $\mathrm{PD}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=2^{\circ} \mathrm{C}$ SOT23-5L 0.4W
DFN3x3 8L 1.4W
SOT89-5L 0.7 W
Recommended Operation Conditions
Operating Junction Temperature Range (Note 5) $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
Note 2. Devices are ESD sensitive. Handling precaution recommended.
Note 3. θ_{JA} is measured in the natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a low effective thermal conductivity tes t board of JEDEC 51-3 thermal measurement standard.
Note 4. θ_{JA} is measured at $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. $\theta \mathrm{Jc}$ is measured at the exposed pad of the package.
Note 5. The device is not guaranteed to function outside its operating conditions.

1A, Hysteretic, High Brightness
EC4304
LED Driver with Internal Switch
Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Supply Input						
Supply Voltage Range	Vin		7	-	40	V
VIN POR Threshold	VIngth	VIN Rising	-	4.95	-	V
VIN POR Threshold	VInfth	VIN Falling	-	4.8	-	V
Quiescent Current with Output Off	I_Qoff	ADJ pin grounded	-	20	40	$\mu \mathrm{A}$
Quiescent Current with Output Switching	I_Qon	ADJ pin floating $\mathrm{f}=250 \mathrm{KHz}$	-	0.5	1.0	mA
ISENSE Pin						
Current Sense Threshold Voltage	Vsense	ISENSE pin with respect to VIN, ADJ $=1.25 \mathrm{~V}$	95	100	105	mV
ISENSE Input Current	ISENSE	VSENSE $=$ VIN-0,1	-	-	1.0	$\mu \mathrm{A}$
Reference						
Reference Voltage	Vref	ADJ pin Voltage	-	1.25	-	V
Reference Voltage Temperature Coefficient			-	50	-	ppm/V
ADJ Pin						
ADJ Pin for DC Control Level	$\mathrm{V}_{\text {AdJ }}$		0.3	-	2.5	V
ADJ to Switch Device from On State to Off State	Vadjoff	$V_{\text {ADJ }}$ falling	0.15	0.2	0.25	V
ADJ to Switch Device from Off State to On State	VAD_on	$V_{\text {AdJ }}$ rising	0.2	0.25	0.3	V
ADJ to VREF Resistance	Radj	$0<V_{\text {ADJ }}<$ VREF	135	-	250	K Ω
		VadJ $>$ VREF +100 mV	13.5	-	25	K Ω
ADJ Pin Low Frequency Duty Cycle Range	DPWM (LF)	PWM frequency < 500Hz	10	-	100	\%
ADJ Pin High Frequency Duty Cycle Range	$\begin{gathered} \hline \text { DPWM } \\ (\mathrm{HF}) \\ \hline \end{gathered}$	PWM frequency $>10 \mathrm{KHz}$	16	-	100	\%
LX pin						
LX Switch Current	Itxmean	EC4304A		-	1	A

1A, Hysteretic, High Brightness
LED Driver with Internal Switch

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
LX Rds_on	Rtx	$@ l ı x=1 \mathrm{~A}, \mathrm{EC} 4304 \mathrm{~A}$	-	0.3	0.6	Ω
LX Leakage Current			-	-	5	$\mu \mathrm{A}$
Minimum Switch ON Time	Ton_min	LX Switch ON	-	240	-	ns
Minimum Switch OFF Time	Toff_min	LX Switch OFF	-	200	-	ns
Recommended Minimum Switch ON Time	Ton_min_rec		-	800	-	ns
Frequency						
Operation Frequency	Fıx	ADJ pin floating, $\mathrm{L}=33 \mu \mathrm{H}(0.093 \Omega)$ lout = $1 \mathrm{~A} @$ VLED=3.6V driving 1LED	-	280	-	kHz
Recommended Maximum Operation Frequency	Fıxmax		-	-	1	MHz
Duty Cycle Range of Output Switch of Operation Frequency	Dıx		30	-	70	\%
Internal Comparator Propagation Delay	TPD		-	50	-	ns
Soft-Start						
Soft-Start Time		Time taken for output current to reach 90% of final value after voltage on ADJ pin has risen above 0.3 V .	-	500	-	$\mu \mathrm{s}$

Typical Operation Characteristics

Reference Voltage vs. VCC

Shutdown Current vs. Supply Voltage

Rds_ON vs. Temperature

1A, Hysteretic, High Brightness

Typical Operation Characteristics

Efficiency 1, 3 and 7 LEDs

Soft Start vs. C_ADJ

Typical Operation Characteristics

Package Information

SOT23-5L

COMMON DIMENSIONS
(UNITS OF MEASURE = MILLIMETER)

SYMBOL	MIN	NOM	MAX
A	-	-	1.45
A1	0	-	0.15
A2	0.90	1.10	1.30
A3	0.60	0.65	0.70
b	0.39	-	0.49
b1	0.38	0.40	0.45
c	0.12	-	0.19
c1	0.11	0.13	0.15
D	2.85	2.95	3.05
E	2.60	2.80	3.00
E1	1.55	1.65	1.75
e	0.85	0.95	1.05
e1	1.80	1.90	2.00
L	0.35	0.45	0.60
L1	$0.59 R E F$		
L2	0.25 BSC		
R	0.10	-	-
R1	0.10	-	0.25
θ	0	-	8°
θ 1	8^{*}	10^{*}	12^{*}
θ 2	8^{*}	10°	12^{*}

BASE METAL
SECTION B-B

NOTES:
ALL DIMENSIONS REFER TO JEDEC STANDARD MO-178 AA
DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

Package Information SOT89-5L

SYMBOLS	DIMENSIONS IN MILLIMETERS		
	MIN	NOM	MAX
A2	1.40	1.50	1.60
b	0.38	---	0.47
b1	0.37	0.40	0.43
c	0.36	---	0.46
c1	0.35	0.38	0.41
a	0.46	---	0.56
a1	0.45	0.48	0.51
d	0.36	---	0.46
d1	0.35	0.38	0.41
D	4.30	4.50	4.70
D1	1.70 REF		
E	4.00	4.20	4.40
E1	2.30	2.50	2.70
e	1.50 BSC		
L1	0.80	1.00	1.20

Package Information

DFN3x3-8L

BOTTOM VIEW

INDICATOR (LASER MARK)

NOTES:
1.CONTROLLING DIMENSIONS ARE IN MILLIMETERS(ANGLES IN DEGREES).
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS THE TERMINALS.

COMMON DIMENSIONS

(UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	TYP	MAX
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
A2	0.30	0.35	0.40
b	2.90	3.00	3.10
D	2.35	2.40	2.45
D1	2.90	3.00	3.10
E	1.65	1.70	1.75
E1	0.65 BSC		
e	0.37	0.42	0.47
L	8		
N	0.08		
aaa	0.10		
bbb			

